

Математическое моделирование упругопластического состояния вращающегося диска

В. В. Акиньшин, М. А. Артемов, Е. С. Барановский,

Н. С. Скорняков, Д. Б. Фатхудинов

Воронежский государственный университет

Аннотация: В рамках приближения плоского напряженного состояния рассматривается задача о быстровращающемся диске, испытывающем боковое давление. В рамках модели идеального упругопластического тела и условии пластичности Мизеса определены значения внешних параметров, для которых происходит зарождение пластических зон. Определение напряжений в пластической области определяется из решения задачи Коши, включающей два дифференциальных уравнения для определения ненулевых компонент тензора напряжений. Для оценки напряженного состояния в упругой области вводится эквивалентное напряжение. Наибольшие допустимые значения внешних параметров определяются из решения задачи, когда диск находится в предельном состоянии. Численные результаты представлены в виде годографа вектора напряжений.

Ключевые слова: плоское напряженное состояние, условие пластичности Мизеса, эквивалентное напряжение, упругопластическое тело, вращающийся диск, годограф вектора напряжений

Введение

Задача определения напряженного и деформированного состояния вращающегося диска для разных моделей рассматривалась в ряде работ, например, [1–12]. В [1] дано решение задачи о вращающемся диске, находящемся в упругом состоянии. В работах [2, 8] приведено решение упругопластической задачи для условия пластичности Мизеса в рамках деформационной теории. В [3, 5, 7] задача решалась при выборе условия Кусочно-линейные пластичности Треска. функции пластичности использовались в работах [9–11] при рассмотрении теплового воздействия на диск. В [12] рассматривалась задача о вращающемся диске для условий пластичности Херши-Хосфорда. В настоящей работе рассматривается вопрос определения границ, в которых могут изменяться значения внешних параметров, И ИХ зависимость OT констант материала, входящих в определяющие уравнения выбранной математической модели.

Постановка задачи

В приближении плоского напряженного состояния рассматривается задача о вращающемся тонком диске постоянной толщины рис. 1.

Выбирается цилиндрическая система координат $\rho\theta z$, ось z которой проходит через центр диска $\rho = 0$, а плоскость z = 0 является средней плоскостью. На внешний контур диска $\rho = b$ действует давление p_b . Выбирается модель изотропного идеального упругопластического тела и условие пластичности Мизеса [2]. Необходимо найти границы изменения внешних параметров, для которых вращающийся диск будет находиться в упругопластическом состоянии, когда в пластическом состоянии находится некоторая центральная область диска $0 \le \rho \le c$ ($c \le b$).

Рис. 1. Вращающийся диск

Пластическая область

В области пластического состояния 0 ≤ *ρ* ≤ *с* напряжения определяются из решения задачи Коши

$$\left(\sqrt{\sigma_{\theta}^{2} + \sigma_{\rho}^{2} - \sigma_{\theta}\sigma_{\rho}} = k, \\ \rho \frac{\partial \sigma_{\rho}}{\partial \rho} + \sigma_{\rho} - \sigma_{\theta} + m\rho^{2} = 0, \\ \sigma_{\rho} \mid_{\rho=0} = k. \end{aligned} \right)$$
(1)

Условие $\sigma_{\rho}|_{\rho=0} = k$ следует из симметрии поля напряжений в центре диска. На упругопластической границе $\rho = c$ должно выполняться условие непрерывности напряжений

$$[\sigma_{\rho}]|_{\rho=c} = [\sigma_{\theta}]|_{\rho=c} = 0.$$
⁽²⁾

Из первого равенства в (1) следует

$$\sigma_{\theta} = \frac{\sigma_{\rho} \pm \sqrt{4k^2 - 3\sigma_{\rho}^2}}{2}.$$
(3)

Если, используя (3), исключить из уравнения равновесия окружное напряжение σ_{θ} , то получим

$$2\rho \frac{\partial \sigma_{\rho}}{\partial \rho} + \sigma_{\rho} \pm \sqrt{4k^2 - 3\sigma_{\rho}^2} + 2m\rho^2 = 0.$$
(4)

Из условий (2) и уравнения равновесия следует, что на упругопластической границе $\rho = c$ производная $\partial \sigma_{\rho} / \partial \rho$ также непрерывна. Однако этой информации недостаточно для выбора знака в уравнении (4). Выбор знака «плюс» или «минус» в (4) можно обосновать только в ходе решения задачи. От задачи Коши (1) можно перейти к иной задаче Коши вида:

$$\begin{pmatrix}
\rho \frac{\partial \sigma_{\rho}}{\partial \rho} + \sigma_{\rho} - \sigma_{\theta} + m\rho^{2} = 0, \\
\frac{\partial \sigma_{\theta}}{\partial \rho} + \frac{2\sigma_{\rho} - \sigma_{\theta}}{2\sigma_{\theta} - \sigma_{\rho}} \left(\sigma_{\theta} - \sigma_{\rho} - m\rho^{2}\right) = 0, \\
\sigma_{\rho} \mid_{\rho=0} = \sigma_{\theta} \mid_{\rho=0} = k.
\end{cases}$$
(5)

Упругая область

Для диска, находящегося в упругом состоянии, напряжения определяются по формулам [1]:

$$\sigma_{\rho} = -\frac{3+\nu}{8}m\rho^{2} + A - \frac{B}{\rho^{2}}, \ \sigma_{\theta} = -\frac{1+3\nu}{8}m\rho^{2} + A + \frac{B}{\rho^{2}}, \tag{6}$$

где v – коэффициент Пуассона, $m = \gamma b^2 \omega^2 / (kg)$ – безразмерный параметр инерциального воздействия, ω – угловая скорость вращения диска, g – ускорение силы тяжести, γ – удельный вес.

В центре диска, учитывая симметрию поля напряжений,

$$\sigma_{\rho}|_{\rho=0} = \sigma_{\theta}|_{\rho=0}. \tag{7}$$

На границе $\rho = b$ радиальное напряжение $\sigma_{\rho}|_{\rho=b} = -p_b$. Для этих граничных условий напряжения будут определяться по формулам:

$$\sigma_{\rho} = \frac{3+\nu}{8}m(b^2 - \rho^2) - p_b, \quad \sigma_{\theta} = \frac{3+\nu}{8}m(b^2 - \mu\rho^2) - p_b, \quad \mu = \frac{1+3\nu}{3+\nu}.$$
 (8)

Из (8) выражаем σ_{θ} через σ_{ρ} и другие параметры:

$$\sigma_{\theta} = \mu \sigma_{\rho} + (1 - \nu) \left(\frac{mb^2}{4} - \frac{2p_b}{3 + \nu} \right). \tag{9}$$

Соотношение (9) показывает, что в плоскости $\sigma_{\theta}, \sigma_{\rho}$ годограф вектора напряжений – отрезок прямой. Поскольку коэффициент Пуассона $v \in [0; 0.5]$, соответственно коэффициент $\mu \in [1/3; 5/7]$, то функция (4) монотонно возрастающая. Из (9) также следует, что увеличение или уменьшение параметров *m* и p_b приводит к противоположным эффектам изменения значений окружного напряжения, а угол наклона прямой (9) к оси абсцисс зависит от параметра v: увеличивается с увеличением параметра v, поскольку $\mu = \mu(v)$ – монотонно возрастающая функция.

Безразмерные величины

Приводимые в статье соотношения записываются в безразмерном виде. Все величины, имеющие размерность длины, отнесены к радиусу диска *b*,

все величины, имеющие размерность напряжений, отнесены к пределу пластичности при одноосном растяжении *k*.

Эквивалентное напряжение

Для оценки величины напряженного состояния в точках упругой области необходимо выбрать эквивалентное напряжение – неотрицательную скалярную функцию симметричную относительно собственных значений тензора напряжений. Если все компоненты тензора напряжений равны нулю, то полагаем, что и эквивалентное напряжение должно быть равно нулю.

Определим эквивалентное напряжение равное функции пластичности Мизеса

$$\sigma_{eq} = \left(\frac{(\sigma_{\theta} - \sigma_{\rho})^2 + (\sigma_{\theta} - \sigma_z)^2 + (\sigma_z - \sigma_{\rho})^2}{2}\right)^{1/2}.$$
 (10)

Границы зарождения пластической области

Примем, что переход в пластическое состояние в точках области $0 \le \rho \le b$ происходит когда (условие пластичности Мизеса)

$$\sigma_{eq} = k \,. \tag{11}$$

В (11) постоянная величина *k* – предел пластичности на одноосное растяжение.

Поскольку

- годограф вектора напряжений для упругого состояния диска отрезок прямой (9),
- 2) имеет место условие (7),
- 3) $\sigma_{\rho} = \sigma_{\rho}(\rho)$ монотонно возрастающая функции,
- 4) кривая пластичности является выпуклой,

то в случае, когда годограф вектора напряжений не выходит за границы кривой пластичности, величина σ_{eq} может принимать значение равное *k* или в точке $\rho = 0$ и/или на границе $\rho = b$ (рис. 2).

Условия зарождения пластической области в центре диска и/или на боковой поверхности диска

Рассмотрим вопрос об определении диапазона изменения параметров управления m, p_b и v, когда в пластическом состоянии находится только точка $\rho = 0$ и/или граница $\rho = b$.

Из формул (8), (11) следует, что в точке $\rho = 0$ эквивалентное напряжение $\sigma_{eq} = k$, когда

$$m = m_0 = \frac{8(p_b + k)}{(3 + \nu)b^2},$$
(12)

$$m = m_0 = \frac{8(p_b - k)}{(3 + \nu)b^2},$$
(12*)

на внешнем контуре $\rho = b$ эквивалентное напряжение $\sigma_{eq} = k$, если

$$m = m_b = \frac{2(p_b + \sqrt{4k^2 - 3p_b^2})}{(1 - \nu)b^2}.$$
 (13)

$$m = m_b = \frac{2(p_b - \sqrt{4k^2 - 3p_b^2})}{(1 - \nu)b^2}.$$
 (13*)

На рис. 2 приведены графики зависимостей параметров m_0 и m_b от параметра p_b для разных значений параметра v. Пунктирной линии соответствует выбор формулах (12*) и (13), а сплошной – выбор формул (12) и (13).

Из формул (12) и (13) находим, что равенство $m_0 = m_b$ выполняется, если

$$p_b = p^* = \frac{(1+3\nu)(5-\nu)}{7\nu^2 + 2\nu + 7}k.$$
 (14)

Если $p_b = p^*$, то из формул (12) и (13) получаем

$$m = m^* = \frac{32(1+\nu)k}{(7\nu^2 + 2\nu + 7)b^2}.$$
(15)

Учитывая диапазон изменения параметра v находим, что $m^* \in [32k/(7b^2); 64k/(13b^2)].$

Равенство $\sigma_{eq}|_{\rho=0} = k$ может выполняться, если параметр $p_b \in [-k; p^*]$, а параметр $m = m_0$. Если $p_b = -k$, то $m_0 = 0$. В этом случае $\sigma_{\rho} = \sigma_{\theta} = k$ и диск находится в предельном состоянии. Поэтому в дальнейшем $p_b \in (-k; p^*]$.

Только в центре диска $\sigma_{eq} = k$

В данном случае должно выполняться неравенство $m_0 < m_b$, которое будет верным, если $p_b \in (-k; p^*)$. Таким образом, для того чтобы только в точке $\rho = 0$ выполнялось условие $\sigma_{eq} = k$, параметры управления должны удовлетворять системе

$$\begin{cases} \nu \in [0; 0.5], \\ p_b \in (-k; p^*), \\ m = m_0. \end{cases}$$
(16)

На рис. 5 приведены графики годографа вектора напряжений для разных значений коэффициента Пуассона, когда значения параметров управления определяется по (16).

Предельное состояние диска

Если радиус упругопластической границы c=1, то диск будет находиться в предельном состоянии. В этом случае один из параметров *m* или p_b задается, а другой определяется из решения задачи (5); параметр $p_b = [-k;2k/\sqrt{3}]$. Поскольку для решения задачи (5) надо указать значение параметра *m*, то наибольшее значение $m = m_{max}$ определяется из условия $\sigma_{eq}|_{\rho=b} = k$, когда $p_b = 2k/\sqrt{3}$.

Например, когда $p_b = 2k/\sqrt{3}$, то с точностью до 10^{-4} значение $m_{max} = 6.276$.

Упругопластическое состояние диска

Рассматриваем случай, когда в области $0 \le \rho \le c$ реализуется пластическое состояние, а в области $c \le \rho \le b$ – упругое состояние.

Обозначим через p_c и σ_c – давление и значение окружного напряжения на упругопластической границе соответственно. Тогда величины *A* и *B* в (6) и радиус упругопластической границы будут определяться из условий непрерывности напряжений на упругопластической границе (2) и граничного условия $\sigma_{\rho}|_{\rho=b} = -p_b$.

Зная наименьшие параметров т значения И p_h , когда радиус упругопластической границы c = 0, и наибольшее значение параметров $m = m_{max}$ и p_b , когда радиус упругопластической границы c = b можно выбрать один множества возможных алгоритмов ИЗ решения упругопластической задачи. Вид каждого конкретного алгоритма вполне очевиден.

Результаты численных вычислений

На рис. 4 представлены графики годографа вектора напряжений, когда диск находится в упругопластическом состоянии для разных значений внешних параметров m и p_b с точностью до 10^{-4} .

Рис.4. Годограф вектора напряжений. c = 0.5, v = 0.3, a) m = 5.4715, p_b = 0.9646, b) m = 5, p_b = 0.7986, c) m = 2.83, p_b = 0

Подход к построению годографа вектора напряжений как элемент верификации алгоритма решения задач предлагался ранее в работах [8, 9].

Выводы

Для построения алгоритма решения задачи о вращающемся диске, испытывающем боковое давление, необходимо определить допустимые значения внешних параметров m и p_b , для которых диск будет находиться в упругом состоянии. Наибольшие допустимые значения этих параметров будут являться наименьшими значениями для упругопластического

состояния диска. Наибольшие допустимые значения параметров *m* и *p*_b для упругопластического состояния определяются из рассмотрения предельного состояния диска. Предлагаемые графики для годографа вектора напряжений позволяют контролировать правильность алгоритма решения задачи.

Литература

1. Timoshenko S. R, Goodier J. N. Theory of Elasticity. New York: McGraw-Hill, 1970. 506 p.

2. Соколовский В. В. Теория пластичности. М.: Высшая школа. 1969. 608 с.

3. Calladine C. R. Engineering Plasticity. Oxford: Pergamon, 1969. 318 p.

4. Życzkowski M. Combined Loadings in the Theory of Plasticity. Warsaw: PWN-Polish Scientific Publishers, 1981. 714 p.

5. Chakrabarty J. Theory of Plasticity. Oxford: Elsevier Butterworth-Heinemann, 2006. 882 p.

6. Gamer U. Tresca's Yield Condition and the Rotating Disk // Transactions ASME Journal of Applied Mechanics. 1983. V. 50, pp. 676–678.

 Güven U. On the elastic-plastic rotating shrink fit with linearly hardening hub exhibiting variable thickness in exponential form // Acta Mechanica. 1993. V.
 99, pp, 125–134.

8. Александров С.Е., Ломакин Е.В., Дзенг Й.Р. Влияние зависимости условия текучести от среднего напряжения на распределение напряжений во вращающемся диске // Доклады Академии наук. 2010. Т. 435. № 5. С. 610– 612.

9. Aleksandrova N. Exact deformation analysis of a solid rotating elasticperfectly plastic disk // International Journal of Mechanical Science, 2014. V. 60, pp. 88–55.

10. Zafarmand H., Hassani B. Analysis of two-dimensional functionally graded rotating thick disks with variable thickness // Acta Mechanica. 2014. V. 225, pp. 453–464.

11. Артемов М. А., Барановский Е. С., Бердзенишвили Г. Г., Переяславская И. И. О напряженном состоянии тонкого диска с учетом зависимости предела текучести от температуры // Инженерный вестник Дона, 2017, № 3. URL: ivdon.ru/ru/magazine/archive/n3y2017/4359

12. Aleksandrova N. N., Artemov M. A., Baranovskii E. S., Shashkin A. I. On stress/strain state in a rotating disk // Journal of Physics: Conference Series. 2019. Vol. 1203, Article ID 012001, DOI: 10.1088/1742-6596/1203/1/012001

References

1. Timoshenko S. R, Goodier J. N. Theory of Elasticity. New York: McGraw-Hill, 1970. 506 p.

2. Sokolovsky V. V. Teoriya plastichnosti [Plasticity theory]. Moscow: Vysshaya Shkola, 1969. 608 p.

3. Calladine C. R. Engineering Plasticity. Oxford: Pergamon, 1969. 318 p.

4. Życzkowski M. Combined loadings in the theory of plasticity, PWN-Polish Scientific Publishers, Warsaw, 1981. 714 p.

Chakrabarty J. Theory of Plasticity. Elsevier Butterworth-Heinemann, 2006.
 882 p.

6. Gamer U. Transactions ASME Journal of Applied Mechanics. 1983. V. 50, pp. 676–678.

7. Güven U. Acta Mechanica. 1993. V. 99, pp, 125-134.

8. Aleksandrov S. E., Lomakin E. V., Dzeng J. R. Doklady Akademii nauk. 2010. T. 435. № 5. C. 610–612.

9. Aleksandrova N. International Journal of Mechanical Science. 2014. V. 60, pp. 88–55.

10. Zafarmand H., Hassani B. Acta Mechanica. 2014. V. 225, pp. 453-464.

11. Artemov M. A., Baranovskii E. S. Berdzenishvili G. G., Pereyaslavskaya
I. I. Inženernyj vestnik Dona (Rus), 2017. № 3. URL: ivdon.ru/ru/magazine/archive/n3y2017/4359.

12. Aleksandrova N. N., Artemov M. A., Baranovskii E. S., Shashkin A. I. Journal of Physics: Conference Series. 2019. Vol. 1203. Article ID 012001, DOI: 10.1088/1742-6596/1203/1/012001