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Abstract: In this paper we describe efficient Matlab-based implementation of the finite element 
solver for the problem of bending of Mindlin plates. This solver is tested on fine meshes 
consisting of a large number of linear rectangular finite elements. The performance of this solver 
is so good that even for fine meshes considered the CPU time is small enough.   
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Introduction 

Classical theory of thick plates and plates of moderate thickness is presented 

in references [1–4]. Various extensions of the classical theory can be found in 

references [5–10]. Recall that in the theory of thick plates (Mindlin plate theory) 

the transverse normal can rotate in such a way that after rotation it does not remain 

perpendicular to the mid-surface of the plate and thus the shear deformations are 

not zero. In contrast, in the theory of thin plates (Kirchhoff plate theory) the 

vertical element of the plate always remains perpendicular to the mid-surface of 

the plate and therefore the shear deformations are zero. For better accuracy of the 

solution for moderately thick and thick plates it is recommended to use Mindlin 

plate theory. 

In [11] we analyzed bending moments in simply-supported plate and we 

showed that for this type of plate two kinds of boundary conditions are possible in 

case one uses the Mindlin plate theory. These are SS-A and SS-B types of 

boundary conditions and they are different in how the angles of rotations xφ , yφ  are 

prescribed in the planes of edges of the plate. In particular, for SS-A plate zero 

rotations are prescribed but for SS-B plate zero rotations are not prescribed but the 

twisting moments in the planes of edges of the plate are equal to zero. 
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The problem of bending of Mindlin plate is solved using the finite element 

method and for that the plate is subdivided into linear rectangular finite elements. 

The square plate is considered and the number of elements along the horizontal and 

vertical axis is taken the same. The plate is subjected to the action of uniformly 

distributed vertical load (pressure). To obtain the solution of the present problem, 

the Matlab code by Ferreira [2] was taken as a basis but this code turned out to be 

slow enough for fine meshes. The objective of this paper is to propose some 

improvements in this code so that it remains efficient and fast even for fine 

meshes.  

Problem Description and Results for Shear Force Distribution 

As in [11] we consider a simply-supported plate that is acted upon by the 

uniform vertical pressure q . The plate of square form lies in the yx −  plane and its 

side length is equal to a . The thickness of the plate is h  (Fig. 1).  

We use the following notation. Let u , v  and w  denote the displacements of 

the mid-surface of the plate along the x , y  and z  axes respectively. Therefore, w  

is the transverse displacement or deflection. Angles of rotations of the normal to 

the mid-surface around the y  and x  axes are denoted by xφ  and yφ . We also denote 

the bending moment around the axes y  and x  by xM  and yM  respectively, and the 

twisting moment is denoted by xyM . In addition, xQ  signifies the shear force acting 

in the cross-section constx = , and yQ  is the shear force acting in the cross-section 

consty = .  

A simply-supported plate can be defined as a plate in which the transverse 

displacement w  is zero and also the corresponding bending moments at the edges 

of the plate are equal to zero, i.e., 
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Fig. 1. – Geometry of square plate 

As in [11] two types of simply-supported boundary conditions are 

considered. For the first type of boundary conditions, denoted here by SS-A, the 

zero angles of rotations are prescribed on the edges of the plate: 
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For the second type of boundary conditions, denoted by SS-B, the zero 

twisting moment is prescribed on the edges of the plate: 

ayaxM xy ,0,,0,0 ===        (3) 

Boundary conditions of SS-A type are much more common, while the 

analysis of the plate with SS-B boundary conditions is presented rarely and in [11] 

we showed some important differences in the solutions for the problem of bending 

of plates with SS-A and SS-B types of boundary conditions. Note that in the 

terminology of Wang et al. [1] the plates with SS-A и SS-B types of boundary 

conditions are denoted by SS and SS* respectively.   

The solution of this problem is obtained with the help of finite element 

method and is based on the theory of plates of moderate thickness or Mindlin plate 

theory. The square plate is discretized into linear rectangular elements (4-node 
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elements) and the number of elements along the x  and y  axes is the same (for 

example, 40 by 40 elements). As was already mentioned, the finite element 

program written in Matlab and presented in the book by Ferreira [2] was taken as a 

basis for obtaining the solution. To be able to use this program for fine meshes, say 

200 by 200 elements, some important modifications must be introduced into the 

program and these improvements will be described below. 

Before describing these improvements of the code let us illustrate the 

importance of solving the present problem on fine meshes. As an example consider 

a square simply-supported plate with a side of length 1=a . The magnitude of the 

transverse pressure is 1=q . The Young’s modulus is 10920=E and Poisson’s ratio 

is 3.0=ν . The thickness of the plate is 1.0=h , and therefore, this plate is a plate of 

moderate thickness with 10/1/ =ah . This data was used in the book by Ferreira [2]. 

In Figs. 2–3 we show how the shear force values for this plate change with the 

increase in the number of elements used in discretization of the domain of the 

plate.  

The shear force yQ  at the center of the side of the plate 0=y  evaluated for 

finite elements meshes with various number of elements along the x  or y  axis is 

shown in Fig. 2. The shear force yQ  is shown for the plates with boundary 

conditions of SS-A and SS-B types. We see that the convergence of the shear force 

yQ  for the SS-B plate is slower than for the SS-A plate. Indeed, a reasonably good 

accuracy in the value of the shear force can be achieved with 100 elements for the 

SS-A plate but for the SS-B plate we need at least 200–250 elements along each 

side of the plate. Having the mesh with 100 elements we can get only a rough 

estimate of the shear force yQ  for the SS-B plate. Fig. 2 also shows that by using 

the meshes with small number elements, say 20 by 20 elements, it is not possible 

to achieve a good accuracy in distribution of shear force even for the plate with 

boundary conditions of SS-A type.  
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Fig. 2. – Dependence of the shear force yQ  at the center of the side 0=y  of 

the square plate, subjected to uniform transverse pressure of magnitude 1, on the 

number of elements 

 

Fig. 3 shows the shear force yQ  at the corner of the plate 0=y , 0=x . Due to 

the symmetry xy QQ =  at the corner. For the SS-A plate the shear force is equal to 

zero, but for the SS-B plate this force is not zero. We see here that situation with 

the convergence of the shear force results is slightly better compared to the shear 

force at the center of the side. Indeed, with 150–200 elements along each side of 

the plate we can obtain a reasonably good approximation to the value of the shear 

force at the corner. 
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Fig. 3. – Dependence of the shear force xy QQ =  at the corner 0=y , 0=x  of 

the square plate, subjected to uniform transverse pressure of magnitude 1, on the 

number of elements 

 

All these results suggest that having the mesh with large number of elements 

is strongly desired in the analysis of the simply-supported plate, especially in case 

of the plate with SS-B type of boundary conditions. 

 

Implementation of Efficient FE solver in Matlab 

For solving the problem described above the Matlab code presented in the 

book by Ferreira [2] is used. In this code the entire stiffness matrix with all zero 

terms is stored in computer memory and then the Gaussian elimination procedure 

is used to solve the resulting system of linear equations. If one uses the mesh with 

elyelx NN =  elements along each side of the square plate and each element is a 

rectangle with 4 nodes, then the total number of nodes in the mesh is ( )21+= elxn NN . 

Taking into account the fact that each node has 3 degrees of freedom (one for 
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transverse displacement and two for rotations), the total number degrees of 

freedom for this problem is ( )213 += elxdof NN . Thus, the global stiffness matrix has 

( )419 += elxt NN  terms (numbers) which must be stored in computer memory. If, for 

example, 100=elxN , then 900000000≈tN  or 900 mln. terms and if 50=elxN , then 

56250000≈tN  or 56 mln. terms. It appears that the memory resources of the 

average home-based workstation with 8 GB of RAM may be insufficient to store 

all this data. In fact, we have established that the maximum number of elements in 

1D array that the aforementioned computer may store is about 200 mln. elements 

given that 8 bytes is required for storing each element of the array. 

Table 1 gives the amount of CPU time that the computer spends on solution 

of the present problem for different sizes of the mesh. Original code of Ferreira [2] 

was used for solving the problem. It was not possible to solve the present problem 

on the mesh of 80x80 elements because the memory limits were exceeded.  

 

Table 1 

CPU time required for solving the problem with the help of original code 

Mesh size Time [sec] 
20x20 elements 0.19 
30x30 elements 0.94 
50x50 elements 13.7 
70x70 elements 95.8 
80x80 elements out of memory 

 

 To be able to run problems with large number of elements, we should take 

advantage of Matlab capabilities of working with sparse matrices. The most 

straightforward implementation is to declare the global stiffness matrix as sparse 

    K=sparse(GDof,GDof); 

where the variable Gdof is the total number of degrees of freedom in the mesh. By 

doing so, only nonzero terms of the global stiffness matrix are stored in computer 
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memory and the problem with memory shortage will be solved. However, after 

running the modified code, we observe that the computation speed is low for 

problems on fine meshes. Surprisingly, most of the CPU time is now spent not on 

the solution of the system of equations (with the help of Matlab operator 

“backslash”) but on assembling the global stiffness matrix. Assembling the global 

stiffness matrix in the code by Ferreira [2] is divided into two stages: first the 

bending part of the stiffness matrix for all elements is assembled, and after that the 

shear part of the stiffness matrix for all elements is assembled: 

loop over all elements 
  K_b = create bending part of stiffness matrix 
  K(elementDof,elementDof)=... 
  K(elementDof,elementDof)+K_b; 
end loop 
loop over all elements 
  K_s = create shear part of stiffness matrix 
  K(elementDof,elementDof)=... 
  K(elementDof,elementDof)+K_s; 
end loop 
 

Here elementDof is an array with row and column numbers that 

correspond to location within the global stiffness matrix into which the local 

stiffness matrix of the element must be placed. In other words, elementDof 

stores all degrees of freedom of the element using global numbering. 

It should be noted that the bending part of the stiffness matrix K_b has 64 

nonzero terms while the shear part of the stiffness matrix K_s has 104 nonzero 

terms out of total 124 terms (since there are 12 degrees of freedom for each 

element). Therefore, K_s is less sparse and its assembly takes noticeably more 

time that the assembly of K_b. It is also important to note that assembly of the 

stiffness matrices for the first, say, 1000 elements takes considerably less time than 

the assembly of the matrices for the last 1000 elements in the loop. This is true 

because the structure of the global stiffness matrix gets more and more complex as 
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we sequentially go through all elements in the loop and add more and more 

nonzero terms to the global stiffness matrix.    

In view of the reasons mentioned above, we can somewhat improve the code 

performance (in terms of speed) by executing first the loop where the shear part of 

the stiffness matrix is assembled, and then placing the loop in which the bending 

part of the stiffness matrix is assembled, i.e. by reversing the original order: 

loop over all elements 
  K_s = create shear part of stiffness matrix 
  K(elementDof,elementDof)=... 
  K(elementDof,elementDof)+K_s; 
end loop 
loop over all elements 
  K_b = create bending part of stiffness matrix 
  K(elementDof,elementDof)=... 
  K(elementDof,elementDof)+K_b; 
end loop 

 

This new code will be faster since here we first assemble the non-sparse 

local stiffness matrix K_s into a relatively empty global stiffness matrix and after 

that the sparse matrix K_b is placed into the relatively populated global stiffness 

matrix. Thus, we avoid the situation in which the non-sparse matrix is placed into 

the populated global stiffness matrix, which we had in the first code. 

It is also worth mentioning that combining two loops over all elements into 

one loop has led to a slight slow-down of the code: 

loop over all elements 
  K_s = create shear part of stiffness matrix 
  K(elementDof,elementDof)=... 
  K(elementDof,elementDof)+K_s; 
  K_b = create bending part of stiffness matrix 
  K(elementDof,elementDof)=... 
  K(elementDof,elementDof)+K_b; 
end loop 
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Resulting CPU times (after this improvement) are shown in Table 2 for 

different meshes (again we remark that almost all CPU time is spent on the 

assembly of the global stiffness matrix). 

Table 2 

CPU time required for solving the problem  

with the help of the code after the first improvement 

Mesh size Time [sec] 
50x50 elements 7.9 
70x70 elements 29 

100x100 elements 117 
150x150 elements 707 

 

This is of course an improvement of the code performance compared to the 

original version but it is still not satisfying as we need a further speed-up. 

А considerable improvement of the code can be achieved if we create the 

sparse matrix by using triplets i, j, v: 

    K = sparse(i,j,v);  

where i is an array that contains the row numbers of all nonzero elements of the 

matrix K, j is an array that contains the column numbers of the nonzero elements 

of the matrix in the same order, and v is an array that stores the nonzero elements 

of the matrix in the same order. 

At the beginning, the arrays similar to i and j can be formed locally, for 

each element, using the array elementDof, which stores all degrees of freedom 

of the element. Below we describe how it can be done in Matlab. 

Using the function meshgrid we can obtain two-dimensional arrays in 

which degrees of freedom for the element are repeated row-wise or column-wise 

    [X,Y]=meshgrid(elementDof,elementDof); 

Note that here in the array X the degrees of freedom are changing along the 

row, while in the array Y the degrees of freedom are varying along the column. 
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After that we transform the two-dimensional arrays X and Y into one-

dimensional arrays X1 and Y1 by using the function reshape 

    X1=reshape(X,1,12^2); 

    Y1=reshape(Y,1,12^2); 

and here we use the fact that there are 12 degrees of freedom for each element. The 

function reshape forms 1-D array column-wise (first, it copies elements from 

the first column of a two-dimensional array, then from the second column, etc.). 

Thus, the array X1 will contain dof1 (degree of freedom number 1) repeated 12 

times, then dof2 repeated 12 times, etc. On the hand, the array Y1 will contain the 

sequence dof1, dof2, …, dof12 repeated 12 times. 

Next, for each finite element we transform the element stiffness matrix into 

1D array V1, also by using the function reshape 

    V1=reshape(K_s+K_b,1,12^2); 

where K_s and K_b are the shear and bending parts of the element stiffness 

matrix. 

Obviously, we need to create similar arrays X1, Y1, V1 for each element. 

Then, for each element we save its indices X1, Y1 inside the global arrays II and 

JJ in proper places and save the components of the stiffness matrix of each 

element inside the global array VV: 

    II((e-1)*12*12+1:e*12*12)=X1; 

    JJ((e-1)*12*12+1:e*12*12)=Y1; 

    VV((e-1)*12*12+1:e*12*12)=V1; 

where e is the element number. Obviously, the global arrays II, JJ will have 

repeated terms since most degrees of freedoms in the mesh are shared by several 

elements. But that is not a problem for assembling the global stiffness matrix since 

the Matlab function sparse will accumulate values of VV (add them up) if the 
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indices inside the arrays II and JJ are repeated. Thus, we can conveniently use 

the command 

    K=sparse(II,JJ,VV); 

which will create the desired sparse global stiffness matrix K.  

In the code that we used we did not actually form the array V1 but placed the 

components of the stiffness matrix of the element directly inside the array VV  

loop over all elements 
  K_s = create shear part of stiffness matrix 
  VV((e-1)*12*12+1:e*12*12)=... 
  VV((e-1)*12*12+1:e*12*12)+reshape(K_s,1,12^2); 
end loop 
loop over all elements 
  K_b = create bending part of stiffness matrix 
  VV((e-1)*12*12+1:e*12*12)=... 
  VV((e-1)*12*12+1:e*12*12)+reshape(K_b,1,12^2); 
end loop 
 

In Table 3 we present the resulting CPU times required for the solution of 

the problem by using the efficient assembly of the sparse stiffness matrix described 

above. Note that these times do not include the time spent on mesh generation, 

which also grows as the mesh gets large. 

 

Table 3 

CPU time required for solving the problem  

with the help of the code after the second improvement 

Mesh size Time [sec] 
100x100 elements 3.3 
200x200 elements 14.3 
300x300 elements 33.7 
400x400 elements 63.3 
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We can see now that the time spent on the assembly of the global stiffness 

matrix and solution of the system of equations is now considerably smaller and 

even for very fine meshes the solution can be obtained within a reasonable amount 

of time. 

    Conclusions 

In this article we described an efficient implementation of the finite element 

solver for the problem of bending of simply-supported plate. This implementation 

is realized in Matlab software and it is based on the code written by Ferreira [2].  

It was shown that for better accuracy of the solution of the present problem, 

and in particular, shear force distribution, it is strongly advised to use fine meshes, 

at least when simple linear 4-node finite elements are used in the mesh. But the 

finite element code proposed by Ferreira [2] could hardly be used for the fine 

meshes due to low speed of execution and limitations on computer memory. That 

was a motivation for searching the ways of code improvement.  

Major improvement of the code performance was achieved by using the 

Matlab function sparse and its capability to create the sparse matrix from one-

dimensional arrays with accumulation of values over the repeated indices. The 

latter capability is very convenient for assembling the global stiffness matrix 

during finite element computations.   
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